No special classes or libraries are used with this application. The complete source resides in the one file above. After downloading, the following should work in any JDK 1.2 compatible compiler:
javac MatrixCalculator.java
java MatrixCalculator
Matrix Calculator Tips/Help
All Matrices must be symmetric (n x n)
Enter Matrix Elements Row by Row seperated by spaces.
Ex. (3x3)
1 2 3
4 5 6
7 8 9
Results will be placed in the C matrix.
The calculation of the determinant, by definition, is based upon a factorial number of calculations with respect to the size of the matrix. ie. a 3x3 matrix would have 6 calculations (3!) to make, whereas a 20x20 matrix would have 2.43 x 10^18 calculations (20!). So instead of brute forcing the calculations, I first do some operations on the matrix, which converts it to a upper triangular matrix, and then calculate the determinant by multipling down the diagonal, since everything below is 0, this will give the determinant.
Floating Points and Accuracies
For some reason computers aren't as accurate as I think they are, probably my calculation techniques. The accuracy of the numbers are probably only to 3 maybe 2 decimal places. If you keep applying operations to matrices and then use the resultant matrix a couple of times, the decimals get out of whack. Calculating an inverse and then multplying the matrix by it, is a good example of this.
Test Some Mathematical Theories
The determinant of A-inverse equals 1 over the determinant of A.
If two rows of matrix A are equal, the determinant of A equals 0.
det(A*B)=det(A)det(B)
A*B does not necessarily equal B*A
The determinant of A-transpose equals the determinant of A.
If the matrix B is constructed by interchanging two rows (columns) in matrix A, then the determinant of B equals the negative determinant of A
You can test, adj(A) = det(A) * inv(A), but this is the theorem I use to calculate the inverse, so it better work.
Mathematics and Linear Algebra Calculating the Determinant
The calculation of the determinant, by definition, is based upon a factorial number of calculations with respect to the size of the matrix. ie. a 3x3 matrix would have 6 calculations (3!), whereas a 20x20 matrix would have 2.43 x 10^18 calculations (20!).
So instead of brute forcing the calculations, I first do some operations on the matrix, which converts it to a upper triangular matrix, and then calculate the determinant by multipling down the diagonal, since everything below is 0, this will give the determinant.
See The Mathematics Behind Them for more information and mathematical explanations on the definitions and calculation techniques.
Click the spoiler below for displaying source-code
SOURCE CODE
import java.awt.BorderLayout;
import java.awt.Component;
import java.awt.Dimension;
import java.awt.GridLayout;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
import java.awt.event.WindowAdapter;
import java.awt.event.WindowEvent;
import java.text.NumberFormat;
import java.util.ArrayList;
import java.util.StringTokenizer;
import javax.swing.BorderFactory;
import javax.swing.Box;
import javax.swing.BoxLayout;
import javax.swing.JButton;
import javax.swing.JFrame;
import javax.swing.JLabel;
import javax.swing.JPanel;
import javax.swing.JScrollPane;
import javax.swing.JTextArea;
public class MatrixCalculator {
private boolean DEBUG = true;
private boolean INFO = true;
private static int max = 100;
private static int decimals = 3;
private JLabel statusBar;
private JTextArea taA, taB, taC;
private int iDF = 0;
private int n = 4;
private static NumberFormat nf;
public Component createComponents() {
/* == MATRIKS == */
taA = new JTextArea();
taB = new JTextArea();
taC = new JTextArea();
JPanel paneMs = new JPanel();
paneMs.setLayout(new BoxLayout(paneMs, BoxLayout.X_AXIS));
paneMs.setBorder(BorderFactory.createEmptyBorder(10, 10, 10, 10));
paneMs.add(MatrixPane("Matrix A", taA));
paneMs.add(Box.createRigidArea(new Dimension(10, 0)));
paneMs.add(MatrixPane("Matrix B", taB));
paneMs.add(Box.createRigidArea(new Dimension(10, 0)));
paneMs.add(MatrixPane("Matrix C", taC));
/* == OPERATION BUTTONS == */
JPanel paneBtn = new JPanel();
paneBtn.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
paneBtn.setLayout(new GridLayout(3, 3));
JButton btnApB = new JButton("A + B = C");
JButton btnAmB = new JButton("A * B = C");
JButton btnBmA = new JButton("B * A = C");
JButton btnAdjA = new JButton("adjoint(A) = C");
JButton btnInvA = new JButton("inverse(A) = C");
JButton btnInvB = new JButton("inverse(B) = C");
JButton btnTrnsA = new JButton("transpose(A) = C");
JButton btnDetA = new JButton("determ(A) = C");
JButton btnDetB = new JButton("determ(B) = C");
paneBtn.add(btnApB);
paneBtn.add(btnAmB);
paneBtn.add(btnBmA);
paneBtn.add(btnAdjA);
paneBtn.add(btnInvA);
paneBtn.add(btnInvB);
paneBtn.add(btnTrnsA);
paneBtn.add(btnDetA);
paneBtn.add(btnDetB);
/* == ADD BUTTON Listeners == */
btnApB.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(AddMatrix(ReadInMatrix(taA),
ReadInMatrix(taB)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnAmB.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(MultiplyMatrix(
ReadInMatrixNotSquare(taA),
ReadInMatrixNotSquare(taB)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnBmA.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(MultiplyMatrix(ReadInMatrixNotSquare(taB),
ReadInMatrixNotSquare(taA)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnInvA.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(Inverse(ReadInMatrix(taA)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnInvB.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(Inverse(ReadInMatrix(taB)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnAdjA.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(Adjoint(ReadInMatrix(taA)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnTrnsA.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
DisplayMatrix(Transpose(ReadInMatrixNotSquare(taA)), taC);
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnDetA.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
taC.setText("Determinant A: "
+ nf.format(Determinant(ReadInMatrix(taA))));
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
btnDetB.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent evt) {
try {
taC.setText("Determinant B: "
+ nf.format(Determinant(ReadInMatrix(taB))));
} catch (Exception e) {
System.err.println("Error: " + e);
}
}
});
/* == MAIN PANEL == */
JPanel pane = new JPanel();
pane.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
pane.add(paneMs);
pane.add(paneBtn);
JPanel fpane = new JPanel();
fpane.setLayout(new BorderLayout());
fpane.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
fpane.add("Center", pane);
statusBar = new JLabel("Ready");
fpane.add("South", statusBar);
return fpane;
}
/* == Setup Invidual Matrix Panes == */
private JPanel MatrixPane(String str, JTextArea ta) {
JScrollPane scrollPane = new JScrollPane(ta);
int size = 200;
scrollPane.setPreferredSize(new Dimension(size, size));
JLabel label = new JLabel(str);
label.setLabelFor(scrollPane);
JPanel pane = new JPanel();
pane.setBorder(BorderFactory.createEmptyBorder(5, 5, 5, 5));
pane.setLayout(new BoxLayout(pane, BoxLayout.Y_AXIS));
pane.add(label);
pane.add(scrollPane);
return pane;
}
public static void main(String[] args) {
JFrame frame = new JFrame("Matrix Calculator");
frame.setSize(new Dimension(725, 200));
MatrixCalculator app = new MatrixCalculator();
Component contents = app.createComponents();
frame.getContentPane().add(contents, BorderLayout.CENTER);
frame.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {
System.exit(0);
}
});
frame.pack();
frame.setVisible(true);
nf = NumberFormat.getInstance();
nf.setMinimumFractionDigits(1);
nf.setMaximumFractionDigits(decimals);
}
// ------------------------------------------------------------------------------
// ------------------------------------------------------------------------------
public float[][] ReadInMatrix(JTextArea ta) throws Exception {
if (DEBUG) {
System.out.println("Reading In Matrix");
}
/* == Parse Text Area == */
String rawtext = ta.getText();
String val = "";
int i = 0;
int j = 0;
int[] rsize = new int[max];
/* == Determine Matrix Size/Valid == */
StringTokenizer ts = new StringTokenizer(rawtext, "\n");
while (ts.hasMoreTokens()) {
StringTokenizer ts2 = new StringTokenizer(ts.nextToken());
while (ts2.hasMoreTokens()) {
ts2.nextToken();
j++;
}
rsize[i] = j;
i++;
j = 0;
}
statusBar.setText("Ukuran Matriks: " + i);
if ((DEBUG) || (INFO)) {
System.out.println("Ukuran Matriks: " + i);
}
for (int c = 0; c < i; c++) {
if (DEBUG) {
System.out.println("i=" + i + " j=" + rsize[c] + " Kolom: "
+ c);
}
if (rsize[c] != i) {
statusBar.setText("Invalid Matrix. Size Mismatch.");
throw new Exception("Invalid Matrix. Size Mismatch.");
}
}
/* == set ukuran matriks == */
n = i;
float matrix[][] = new float[n][n];
i = j = 0;
val = "";
/* == Actual Parsing == */
StringTokenizer st = new StringTokenizer(rawtext, "\n");
while (st.hasMoreTokens()) {
StringTokenizer st2 = new StringTokenizer(st.nextToken());
while (st2.hasMoreTokens()) {
val = st2.nextToken();
try {
matrix[i][j] = Float.valueOf(val).floatValue();
} catch (Exception exception) {
statusBar.setText("Invalid Number Format");
}
j++;
}
i++;
j = 0;
}
if (DEBUG) {
System.out.println("Baca Matriks::");
for (i = 0; i < n; i++) {
for (j = 0; j < n; j++) {
System.out.print("m[" + i + "][" + j + "] = "
+ matrix[i][j] + " ");
}
System.out.println();
}
}
return matrix;
}
public float[][] ReadInMatrixNotSquare(JTextArea ta)
throws Exception {
if (DEBUG) {
System.out.println("Membaca Matriks");
}
/* == Parse Text Area == */
String rawtext = ta.getText();
/* == Determine Matrix Size/Valid == */
StringTokenizer ts = new StringTokenizer(rawtext, "\n");
if (DEBUG)
System.out.println("Baris: " + ts.countTokens());
float matrix[][] = new float[ts.countTokens()][];
StringTokenizer st2;
int row = 0;
int col = 0;
//making sure rows are same length
int last = -5;
int curr = -5;
while (ts.hasMoreTokens()) {
st2 = new StringTokenizer(ts.nextToken(), " ");
last = curr;
curr = st2.countTokens();
if(last != -5 && curr!= last)
throw new Exception("Baris != length");
if (DEBUG)
System.out.println("Kolom: " + st2.countTokens());
matrix[row] = new float[st2.countTokens()];
while (st2.hasMoreElements()) {
matrix[row][col++] = Float.parseFloat(st2.nextToken());
}
row++;
col = 0;
}
System.out.println();
return matrix;
}
// --------------------------------------------------------------
// Display Matrix in TextArea
// --------------------------------------------------------------
public void DisplayMatrix(float[][] matrix, JTextArea ta) {
if (DEBUG) {
System.out.println("Displaying Matrix");
}
String rstr = "";
String dv = "";
for (int i = 0; i < matrix.length; i++) {
for (int j = 0; j < matrix[i].length; j++) {
dv = nf.format(matrix[i][j]);
rstr = rstr.concat(dv + " ");
}
rstr = rstr.concat("\n");
}
ta.setText(rstr);
}
public float[][] AddMatrix(float[][] a, float[][] b) throws Exception {
int tms = a.length;
int tmsB = b.length;
if (tms != tmsB) {
statusBar.setText("Matrix Size Mismatch");
}
float matrix[][] = new float[tms][tms];
for (int i = 0; i < tms; i++)
for (int j = 0; j < tms; j++) {
matrix[i][j] = a[i][j] + b[i][j];
}
return matrix;
}
// --------------------------------------------------------------
public float[][] MultiplyMatrix(float[][] a, float[][] b) throws Exception {
if(a[0].length != b.length)
throw new Exception("Matrices incompatible for multiplication");
float matrix[][] = new float[a.length][b[0].length];
for (int i = 0; i < a.length; i++)
for (int j = 0; j < b[i].length; j++)
matrix[i][j] = 0;
//cycle through answer matrix
for(int i = 0; i < matrix.length; i++){
for(int j = 0; j < matrix[i].length; j++){
matrix[i][j] = calculateRowColumnProduct(a,i,b,j);
}
}
return matrix;
}
public float calculateRowColumnProduct(float[][] A, int row, float[][] B, int col){
float product = 0;
for(int i = 0; i < A[row].length; i++)
product +=A[row][i]*B[i][col];
return product;
}
// --------------------------------------------------------------
public float[][] Transpose(float[][] a) {
if (INFO) {
System.out.println("Performing Transpose...");
}
float m[][] = new float[a[0].length][a.length];
for (int i = 0; i < a.length; i++)
for (int j = 0; j < a[i].length; j++)
m[j][i] = a[i][j];
return m;
}
// --------------------------------------------------------------
public float[][] Inverse(float[][] a) throws Exception {
// Formula used to Calculate Inverse:
// inv(A) = 1/det(A) * adj(A)
if (INFO) {
System.out.println("Performing Inverse...");
}
int tms = a.length;
float m[][] = new float[tms][tms];
float mm[][] = Adjoint(a);
float det = Determinant(a);
float dd = 0;
if (det == 0) {
statusBar.setText("Determinant = 0, Not Invertible.");
if (INFO) {
System.out.println("Determinant = 0, Not Invertible.");
}
} else {
dd = 1 / det;
}
for (int i = 0; i < tms; i++)
for (int j = 0; j < tms; j++) {
m[i][j] = dd * mm[i][j];
}
return m;
}
// --------------------------------------------------------------
public float[][] Adjoint(float[][] a) throws Exception {
if (INFO) {
System.out.println("Performing Adjoint...");
}
int tms = a.length;
float m[][] = new float[tms][tms];
int ii, jj, ia, ja;
float det;
for (int i = 0; i < tms; i++)
for (int j = 0; j < tms; j++) {
ia = ja = 0;
float ap[][] = new float[tms - 1][tms - 1];
for (ii = 0; ii < tms; ii++) {
for (jj = 0; jj < tms; jj++) {
if ((ii != i) && (jj != j)) {
ap[ia][ja] = a[ii][jj];
ja++;
}
}
if ((ii != i) && (jj != j)) {
ia++;
}
ja = 0;
}
det = Determinant(ap);
m[i][j] = (float) Math.pow(-1, i + j) * det;
}
m = Transpose(m);
return m;
}
// --------------------------------------------------------------
public float[][] UpperTriangle(float[][] m) {
if (INFO) {
System.out.println("Converting to Upper Triangle...");
}
float f1 = 0;
float temp = 0;
int tms = m.length; // get This Matrix Size (could be smaller than
// global)
int v = 1;
iDF = 1;
for (int col = 0; col < tms - 1; col++) {
for (int row = col + 1; row < tms; row++) {
v = 1;
outahere: while (m[col][col] == 0) // check if 0 in diagonal
{ // if so switch until not
if (col + v >= tms) // check if switched all rows
{
iDF = 0;
break outahere;
} else {
for (int c = 0; c < tms; c++) {
temp = m[col][c];
m[col][c] = m[col + v][c]; // switch rows
m[col + v][c] = temp;
}
v++; // count row switchs
iDF = iDF * -1; // each switch changes determinant
// factor
}
}
if (m[col][col] != 0) {
if (DEBUG) {
System.out.println("tms = " + tms + " col = " + col
+ " row = " + row);
}
try {
f1 = (-1) * m[row][col] / m[col][col];
for (int i = col; i < tms; i++) {
m[row][i] = f1 * m[col][i] + m[row][i];
}
} catch (Exception e) {
System.out.println("Still Here!!!");
}
}
}
}
return m;
}
// --------------------------------------------------------------
public float Determinant(float[][] matrix) {
if (INFO) {
System.out.println("Getting Determinant...");
}
int tms = matrix.length;
float det = 1;
matrix = UpperTriangle(matrix);
for (int i = 0; i < tms; i++) {
det = det * matrix[i][i];
} // multiply down diagonal
det = det * iDF; // adjust w/ determinant factor
if (INFO) {
System.out.println("Determinant: " + det);
}
return det;
}
}
FOR DOWNLOAD:
CLICK HERE
No Comment.
Add Your Comment